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Reaction of Cu(I) complex having a newly designed
tridentate ligand i-Bu3CY with dioxygen has given an active
bis(m-oxo)dicopper(III) complex, which has exhibited a unique
intramolecular hydroxylation of the b-methine carbon of isobutyl
group of the ligand.

Development of new oxidation and oxygenation reactions of
organic compounds is very important from a viewpoint of
organic, catalytic and industrial chemistries. In stereo- and/or
enantio-selective oxygenation catalysis, metal complexes play
essential and key roles for many cases.1 Therefore, preparation of
a high-valent metal-oxo species causes us to take an interest as the
intermediates in these reaction systems, which are especially
proposed as important factors in enzymatic reactions, such as an
iron(IV)-oxo porphyrin p-cation radical in cytochrome P450 and
a bis(m-oxo)diiron(IV) core in soluble methane monooxygenase
(sMMO).2 These high-valent metal-oxo species are afforded by
theO–Obond cleavage of dioxygenmolecule inmetalloenzymes.
Tolman et al. have found that in the study of m-h2:h2-
peroxodicopper(II) complex with 1,4,7-triisopropyl-1,4,7-triaza-
cyclononane (i-Pr3TACN), the peroxo species is converted to
bis(m-oxo)dicopper(III) species through theO–Obond cleavage.3

After discovering [CuIII2(i-Pr3TACN)2(m-O)2]2þ species, several
bis(m-oxo)dicopper(III) species were prepared and their struc-
tures, spectroscopies, and reactivities toward organic compounds
were investigated.4 The coordinating atoms of the bis(m-oxo)di-
copper(III) complexes reported hitherto have been almost
consisted of imines and/or tertiary amines. Recently, Karlin et
al. have reported the bis(m-oxo)dicopper(III) complex with donor
sets having one secondary and two tertiary amines.5 Thenwe have
designed and prepared a new tridentate ligand with three
secondary amine nitrogens, cis,cis-1,3,5-tris(isobutylamino)cy-
clohexane (i-Bu3CY), which has a higher binding ability to
copper and form a square-pyramidal geometry with a rigid six-
membered chelate ring forced by cyclohexane framework. Using
this ligand we prepared and characterized the bis(m-oxo)dicop-
per(III) and discovered a unique hydroxylation of aliphatic
hydrocarbon.

The starting materials, [CuI(i-Bu3CY)(MeCN)]SbF6 (1),
were prepared by reaction of a tridentate ligand i-Bu3CY with
[CuI(MeCN)4]SbF6 in THF/Et2O under Ar,6 whose colorless
crystals suitable for X-ray analysis were obtained from the
solution on standing for a few days. The crystal structure of 1
revealed that the geometry around each copper ion forms a
tetrahedron coordinated with three secondary amine nitrogens of
i-Bu3CY and an acetonitrile; Cu–N(i-Bu3CY) = 2.080(2),
2.142(2), 2.140(2) �A and Cu–N(acetonitrile) = 1.900(2) �A.7

The distance of Cu(1) from the trigonal plane defined by three
secondary amine nitrogens is 1.114 �A; the Cu(I) ion in complex 1
comes close to the trigonal plane in comparison with the case of

the Cu(I) complex with i-Pr3TACN (1.40 �A).8 The Cu–N bond
lengths and displacement of Cu(I) ion from trigonal plane are
shorter than those of [CuI(i-Pr3TACN)(MeCN)]SbF6, indicating
that i-Bu3CY binds strongly to Cu(I) ion in comparison with i-
Pr3TACN. This may result from the structural factor that the five-
membered chelate ring in the Cu(I) complex with i-Pr3TACN has
been replaced by the six-membered ring in complex 1 with i-
Bu3CY.

The reaction of 1 with O2 in THF gave bis(m-oxo)dicopper-
(III) species (2) with two intense absorption bands at 318 nm
(" ¼ 13000M�1cm�1 per 2Cu) and 416 nm (" ¼
18000M�1cm�1 per 2Cu). The resonance Raman spectra of 2
in THF exerted a band characteristic to a Cu–O stretching
vibration for the Cu2O2 core at 570 cm�1, which shifted to
544 cm�1 using 18O2 instead of 16O2. The observed frequencies
are in the lowest energy site among the bis(m-oxo)dicopper(III)
species reported hitherto,9 indicating that the Cu–O bond strength
for Cu2O2 core prepared in this system is weaker than them. In
CH2Cl2, it exhibits similar spectroscopic features to those inTHF,
�max ¼ 319, 412 nm and �(Cu2O2) = 571 (16O2), 546 (18O2)
cm�1, indicating that 2 is not affected by solvent in contrast to the
case of [Cu2(m-O)2(AN)2]2þ with N–H groups that have been
influenced by solvent mediums.5 1 predominately formed bis(m-
oxo)dicopper(III) species in the reaction with dioxygen in spite of
a kind of solvents.

Fortunately, by raising the temperature of the CH2Cl2
solution containing 2 from �80 �C to room temperature, a green
single crystal was obtained as a decomposition product (3).
Remarkably, the crystal structure of 3 (Figure 2) revealed the
dinuclear copper complex with the two ligands that one b-
methine carbon of the isobutyl groups of i-Bu3CY was hydrox-
ylated.10;11 An insertion of an oxygen atom to the aliphatic b-
carbon for the amino group by bis(m-oxo)dicopper(III) species is
the first time to the best of our knowledge, although it has been

Figure 1. UV-vis spectra 1 and the product (2) generated by the
reaction of 1 with O2 in THF at�90 �C. Inset: Resonance Raman
spectra of the reaction of 1 with 16O2 (A) and

18O2 (B) in THF at
�100 �C (�ex ¼ 413:1 nm).

156 Chemistry Letters Vol.32, No.2 (2003)

Copyright � 2003 The Chemical Society of Japan



previously reported that the a-carbon adjacent to an amino or
phenyl group was hydroxylated by bis(m-oxo)dicopper(III)
species,3;4c and that the b-carbon was hydroxylated via different
or ambiguous intermediate.12;13 Moreover, the yield of isobutyl-
aldehyde that was produced by hydroxylation of a-position was
trace as examined by gas chromatography. The hydroxylation of
b-position methine carbon of complex 2 under this condition was
preferential. The decomposition rate of 2 in THF followed a first-
order equation (k ¼ 7:6� 10�4 s�1 at �90 �C; t1=2 (half-life) =
9:1� 102 s), and the activation parameters were �Hz ¼
34:0	 2:0 kJmol�1 and �Sz ¼ �115	 12 J K�1mol�1. In
CH2Cl2, the rate was k ¼ 2:0� 10�3 s�1 at �90 �C (t1=2 ¼
3:5� 102 s), and the activation parameters were �Hz ¼
42:2	 1:8 kJmol�1 and �Sz ¼ �62	 10 J K�1mol�1, which
are similar to those of the bis(m-oxo)dicopper(III) complexes
reported previously.4c,14 However, the consumption rate of 2 was
much faster even at �90 �C in comparison with other bis(m-
oxo)dicopper(III) complexes reported previously,4 suggesting
the strong coordination of Cu(1) to nitrogen atoms of i-Bu3CY.
These findings suggest that the mechanism for hydroxylation of
isobutyl group is the same as process reported previously:4c,14

First, the reactions are initiated by an intramolecular hydrogen
atom abstraction on the tertiary carbon of the isobutyl group by
the active Cu(III)2(m-O)2 core. After the resultant carbon radical
generated on the b-position is bound by the hydroxyl group, 3 is
reconstituted by dimerization of a monomer complex with the
hydroxylated ligand. It is quite unique that the aliphatic b-
position, in which the C–H bond possesses the higher bond
dissociation energy than those of aliphatic a-position,15 has been
hydroxylated.

In conclusion, the complex 1 with i-Bu3CY ligand having a
higher binding ability has exhibited high reactivity for dioxygen
and has predominantly gave bis(m-oxo)dicopper(III) species 2.
Furthermore, it is quite interesting that the complex 2 has
exhibited a C–H activation which not thea-position but the b-one
of the i-Bu3CY ligand is intramolecularly hydroxylated to
generate 3. Using i-Bu3CY ligand composed of secondary amine,

we succeeded in the rise of oxidation ability of bis(m-oxo)dicop-
per(III) species.
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Figure 2. ORTEP view of the cation part of 3, showing 30%
probability thermal ellipsoids. The hydrogen atoms are omitted
for clarity. Selected bond lengths ( �A) and angles (�): Cu(1)–O(1)
1.981(6), Cu(1)–N(1) 2.026(7), Cu(1)–N(2) 2.038(7), Cu(1)–
N(3) 2.246(9); O(1)–Cu(1)–N(1) 155.4(3), O(1)–Cu(1)–N(2)
99.1(3), O(1)–Cu(1)–N(3) 108.6(3), N(1)–Cu(1)–N(2) 91.1(3),
N(1)–Cu(1)–N(3) 93.5(3), N(2)–Cu(1)–N(3) 90.5(3).
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